

H250 M40 Supplementary instructions

Variable area flowmeter Safety manual

1	Introduction	3
	1.1 Field of application	3
2	Terms and definitions	4
	2.1 Description of the considered profiles	4
3	Description	5
	3.1 Description of the subsystem	
4	Specification of the safety function	7
	4.1 Description of the failure categories	7
5	Project planning	8
	5.1 Applicable device documentation	
6	Life time / Proof tests	9
	6.1 Life time	
7	Safety-related characteristics	11
	7.1 Assumptions	11 12
8	Annex	18
	8.1 Annex 1	

1.1 Field of application

Measurement of volume flow rate of liquids, gases and vapours that shall meet the special safety requirements according to IEC 61508.

The measuring device meets the requirements regarding

- Functional safety in accordance with IEC 61508-2:2000
- EMC directive 2004/108/EC
- ATEX directive 94/9/EC
- PED directive 97/23/EC

For further information please refer to the H250 M40 Declaration of Conformity at the Downloadcenter of the KROHNE-Website www.krohne.com.

1.2 User benefits

Use for

- Volume flow monitoring up to SIL 2 (acc. to exida FMEDA report Krohne 10/10020361 R010)
- Continuous flow measurement and local analog indication
- Easy commissioning
- Excellent price-performance ratio

1.3 Relevant standards / Literature

- [N1] IEC 61508-2:2000 Functional Safety of Electrical/Electronic/Programmable Electronic Safety-Related Systems
- [N2] Electrical & Mechanical Component Reliability Handbook, 2nd Edition 2008, exida L.L.C. ISBN 978-0-9727234-6-6
- [N3] IEC 60654-1:1993-02 2nd edition, Industrial process measurement and control equipment Operating conditions Part 1: Climatic conditions

Terms and definitions

DCD	Diagnostic Coverage of dangerous failures
FIT	Failure In Time (1x10 ⁻⁹ failures per hour)
FMEDA	Failure Modes, Effects and Diagnostic Analysis
HFT	Hardware Fault Tolerance
Low demand mode	Mode, where the frequency of demand for operation made on a safety-related system is not greater than one per year and not greater than twice in the proof test frequency.
PFD _{AVG}	Average Probability of Failure on Demand
SFF	Safe Failure Fraction summarizes the fraction of failure, which lead to a safe state and the fraction of failures which will be detected by diagnostic measures and lead to a defined safety action.
SIF	Safety Instrumented Function
SIL	Safety Integrity Level
Type A component	"Non-complex" subsystem (all failure modes are well defined); for details see 7.4.3.1.2 of IEC 61508-2.
Type B component	"Complex" subsystem (all failure modes are well defined); for details see 7.4.3.1.2 of IEC 61508-2.
T[Proof]	Proof Test Interval

2.1 Description of the considered profiles

Mechanical database

Profile	Profile according to	Ambient tem	Temperature cycle [°C / 365 days]	
	IEC 60654-1	Average (external)	Mean (inside box)	[C / 365 days]
2	C3	25	30	25
4	D1	25	30	35

Profile 2 (low stress): Mechanical field products with minimal self heating, subject to daily

temperature swings.

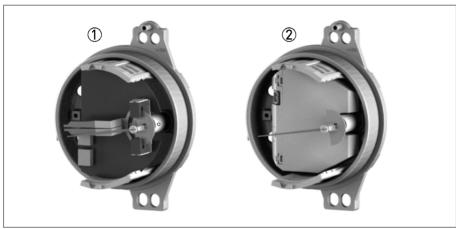
Profile 4 (high stress): Unprotected mechanical field products with minimal self heating,

subject to daily temperature swings and rain or condensation.

Electronic database

Profile	Profile according to IEC 60654-1	Ambient tem	Temperature cycle [°C / 365 days]	
	1EC 60634-1	Average (external) M		[C / 365 days]
2	C3	25	30	25

Profile 2 Low power electrical (2-wire) field products have minimal self heating and are subjected to daily temperature swings.


3.1 Description of the subsystem

H250 M40 - versions

- ① Standard version
- ② HT version

H250 M40 with electrical built ins

- ① Version with K1/K2
- 2 Version with ESK4

3.2 Functional principle

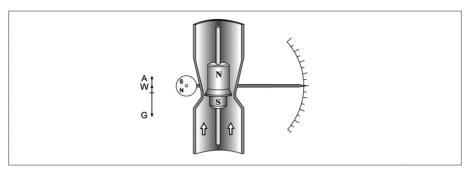


Figure 3-1: Functional principle

The flowmeter operates in accordance with the float measuring principle.

A metal cone is installed in the measuring unit H250, in which a suitably shaped float can move freely up and down.

The flowmeter is inserted into a vertical pipeline and the medium flows through it from bottom to top.

The guided float adjusts itself so that the buoyancy force A acting on it, the form drag W and weight G are in equilibrium (G = A + W).

An annular gap results which width depends on the current flow rate.

The height of the float in the measuring unit, which depends on the float, is transmitted by a magnetic coupling and displayed on a scale.

Strong deflecting magnetic fields can lead to deviations in the measured value.

4.1 Description of the failure categories

In order to judge the failure behaviour of the variable-area flowmeters H250 M40, the following definitions for the failure of the flowmeter were considered:

Fail - Safe	Failure that causes the subsystem to go to the defined fail-safe state without a demand from process.					
Fail Dangerous Undetected	Failure that is dangerous and that is not being diagnosed by internal diagnostics.					
Fail Dangerous Detected	Failure that is dangerous but is detected by internal diagnostics (These failures may be converted to the selected fail-safe state)					
Fail No Effect	Failure of a component that is part of the safety function but is neither a safe failure nor a dangerous failure and has no effect on the safety function. For the calculation of the SFF it is treated like a safe undetected failure.					
Not part	Failures of a component which is not part of the safety function but part of the circuit diagram and is listed for completeness. When calculating the SFF this failure mode is not taken into account. It is also not part of the total failure rate.					

H250 M40 with inductive limit switch output

Fail-Safe State	The fail-safe state is defined as the output beeing de-energized				
Fail Dangerous	Failure that does not respond to a demand from the process (i.e. being unable to go to the defined fail-safe state)				

H250 M40 with 4...20mA output

Fail-Safe State	The fail-safe state is defined as the output exceeding the user defined threshold
Fail Dangerous	Failure that does not respond to a demand from the process (i.e. being unable to go to the defined fail-safe state) or that deviates the output current by more than 2.5% of full span.
Fail High	Failure that causes the output signal to go to the maximum output current (>21mA) according NAMUR NE43.
Fail Low	Failure that causes the output signal to go to the minimum output current (< 3.6 mA) according NAMUR NE43.

In IEC 61508 the "No Effect" failures are defined as safe undetected failures even though they will not cause the safety function to go to a safe state. Therefore they need to be considered in the Safe Failure Fraction calculation.

The demand response time of H250 M40 is < 2s.

5.1 Applicable device documentation

[D1] TD H250/M40-Rxx-en
Technical datasheet H250/M40 – Variable area flowmeter

[D2] MA H250/M40-Rxx-en
Handbook including installation and operating instructions

[D3] exida FMEDA report: KROHNE 10/10020361 R010

5.2 Project planning, behaviour during operation and malfunction

- The stress levels shall be average for an industrial outdoor environment and shall be similar
 to exida Profile 2 or Profile 4 with temperature limits within the manufacture's rating. Other
 environmental characteristics are assumed to be within the manufacturer's ratings.
- Under normal conditions the maximum operating time will be 10 years.
- · Requirements made in the operating manual have to be kept.
- Repair and inspection intervals have to be based on the safety calculations.
- Follow the KROHNE repair instructions in the printed operating manual.
- Modifications made without specific authorisation of the manufacturer are strictly prohibited.
- Follow the Installation and Operating Instructions.
- The application program in the safety logic solver is configured to detect under-range and over-range failures and does not automatically trip on these failures; therefore these failures have been classified as dangerous detected failures. The failure rates of the safety logic solver are not included in the listed failures rates.
- The parameters given by the FMEDA are considered as planning support. The end user is responsible for the overall functional safety of the application.
- For help to find the correct order text see annex 1.

6.1 Life time

Although a constant failure rate is assumed by the probabilistic estimation method this only applies provided that the useful lifetime of components is not exceeded.

Beyond their useful lifetime, the result of the probabilistic calculation method is meaningless, as the probability of failure significantly increases with time.

The useful lifetime is highly dependent on the component itself and its operating conditions — temperature in particular (for example, electrolyte capacitors can be very sensitive). This assumption of a constant failure rate is based on the bathtub curve, which shows the typical behaviour for electronic components. Therefore it is obvious that the PFD $_{\Delta VG}$ calculation is only

valid for components which have this constant domain and that the validity of the calculation is limited to the useful lifetime of each component.

It is assumed that early failures are detected to a huge percentage during the installation period and therefore the assumption of a constant failure rate during the useful lifetime is valid.

According to section 7.4.7.4 of IEC 61508-2, a useful lifetime, based on experience, should be assumed.

According to section 7.4.7.4 note 3 of IEC 61508-2 experience has shown that the useful lifetime often lies within a range of 8 to 12 years.

KROHNE recommends an operational life time for variable area flowmeters no longer than 10 years in SIL rated applications. However, if the user is monitoring the instruments over their life time demonstrating the required results (e.g. constant failure rate), this can allow safety capability exceeding this period on the user's own responsibility.

For the required cyclic proof test refer to *Proof tests* on page 10.

6.2 Proof tests

Possible proof tests to detect dangerous undetected faults

Proof test for H250/M40/K* with inductive limit switches

- 1. Take appropriate action to avoid a false trip.
- 2. Inspect the device for any visible damage, corrosion or contamination.
- 3. Force the variable-area flowmeter H250 M40 to reach a defined "MAX" threshold value and verify that the inductive limit switch goes into the safe state.
- 4. Force the variable-area flowmeter H250 M40 to reach a defined "MIN" threshold value and verify that the inductive limit switch goes into the safe state.
- 5. Restore the loop to full operation.
- 6. Restore normal operation

It is assumed that the test will detect approximately 99% of possible dangerous undetected failures.

Proof test for H250/M40/ESK with 4...20mA output

- 1. Bypass the safety PLC or take other appropriate action to avoid a false trip.
- 2. Perform 5-point calibration verification of the variable are flowmeter H250 M40.
- 3. Force the variable-area flowmeter H250 M40 to go to the high alarm current output and verify that the analog current reaches that value.
- 4. Force the variable-area flowmeter H250 M40 to go to the low alarm current output and verify that the analog current reaches that value.
- 5. Restore the loop to full operation.
- 6. Remove the bypass from the safety PLC or otherwise restore normal operation.

It is assumed that the test will detect approximately 99% of possible dangerous undetected failures.

INFORMATION!

It is necessary to open the casing of the device in order to do the electrical connection and to set the limit switch set points.

Special attention is required when the casing is open. **Avoid a deformation of the precision mechanics indicator system.** By deforming the pointer or the balance vane the ease-of-movement can be influenced leading to a wrong measurement.

By performing the mandatory proof-test after installation and closing the casing the ease-of-movement has to be verified

7.1 Assumptions

The following assumptions have been made during the Failure Modes, Effects and Diagnostic Analysis of the variable-area flowmeter H250 M40.

- Failure rates are constant, wear out mechanisms are not included.
- Propagation of failures is not relevant.
- Failures resulting from incorrect use of the flowmeters H250 M40, in particular humidity entering through incompletely closed housings or inadequate cable feeding through the inlets, are not considered.
- Failures during parameterization are not considered
- Sufficient tests are performed prior to shipment to verify the absence of vendor and/or manufacturing defects that prevent proper operation of specified functionality to product specifications or cause operation different from the design analyzed.
- The mean time to restoration (MTTR) after safe failure is 24 hours.
- All modules are operated in the low demand mode of operation.
- External power failure rates are not included.
- The HART® protocol at H250 M40 is only used for setup, calibration and diagnostics purpose, not during safety operation mode.
- Practical fault insertion test can demonstrate the correctness of the failure effects assumed during FMEDAs.
- The stress levels are average for an industrial outdoor environment and can be compared to exida Profile 2 or Profile 4 with temperature limits within the manufacture's rating. Other environmental characteristics are assumed to be within the manufacturer's ratings.
- The switching contact outputs are connected to a NAMUR amplifier. The failure rates of the amplifier are not included in the listed failure rates.
- Only the current output 4...20 mA or the limit switch outputs are used for safety applications.
- Lead breakage and short circuit detection is activated.
- The application program in the safety logic solver is configured to detect under-range and over-range failures and does not automatically trip on these failures; therefore these failures have been classified as dangerous detected failures. The failure rates of the safety logic solver are not included in the listed failures rates.
- No effect failures are included in the "safe undetected" failure category. Note that these failures on its own will not affect system reliability or safety, and should not be included in spurious trip calculations.

The variable area flowmeter **H250/M40/K*** with inductive limit switches are classified as **Type A subsystems** (non-complex subsystem according 7.4.3.1.2. of IEC 61508-2) with hardware fault tolerance HFT=0. For Type A subsystems the SFF has to be > 60% for SIL2 subsystems with a hardware fault tolerance of 0 (table 2 of IEC 61508-2).

The variable area flowmeter **H250/M40/ESK** with 4...20mA output is classified as **Type B subsystem** (complex subsystem according 7.4.3.1.3. of IEC 61508-2) with hardware fault tolerance HFT=0. For Type B subsystems the SFF has to be > 60% for SIL1 subsystems with a hardware fault tolerance of 0 (table 3 of IEC 61508-2).

7.2 Specific safety-related characteristics

Under the assumptions described in 7.1 and the definitions given in section 4 the following tables show the failure rates according to IEC 61508:

H250/M40/K*-SK with 1 or 2 fail-safe limit switches (MIN/MAX) ① and welded process connections

	λ _{SD}	λ _{SU}	λ_{DD}	λ _{DU}	SFF②	DCD	MTBF	SIL AC ③
Stress profile 2 (low stress)	0 FIT	167 FIT	10 FIT	38 FIT	82%	20%	487 years	SIL2
Stress profile 4 (high stress)	0 FIT	209 FIT	10 FIT	73 FIT	74%	12%	356 years	SIL2

T[Proof] 4	1 year	2 years	5 years	
PFD _{AVG} ⑤	1.82*E-04	3.46*E-04	8.41*E-04	

H250/M40/K*-SK with 1 or 2 standard limit switches (MIN/MAX) (6) and welded process connections

	λ _{SD}	λ _{SU}	λ_{DD}	λου	SFF②	DCD	MTBF	SIL AC ③
Stress profile 2 (low stress)	0 FIT	198 FIT	10 FIT	77 FIT	72%	11%	376 years	SIL2
Stress profile 4 (high stress)	0 FIT	240 FIT	10 FIT	112 FIT	68%	8%	293 years	SIL2

T[Proof] 4	1 year	2 years	5 years	
PFD _{AVG} ⑤	3.68*E-04	7.02*E-04	1.70*E-03	

- The switching contact output is connected to a fail-safe NAMUR amplifier (e.g. Pepperl+Fuchs KF**-SH-Ex1). The failure rates of the amplifier are not included in the listed failure rates.
- ② The number listed is for reference only. The SFF must be determined for the complete subsystem.
- ③ SIL AC (architectural constraints) means that the calculated values are within the range for hardware architectural contraints for the corresponding SIL level.
- 4 It is assumed that proof testing is performed with a proof test coverage of 99%.
- (5) The PFD_{AVG} was calculated for profile 2 using the Markov modelling. The results must be considered in combination with PFD_{AVG} values of other devices of the Safety Instrumented Function (SIF) in order to determine suitability for a specific Safety Integrity Level (SIL) For SIL1 applications, the PFD_{AVG} value needs to be < 10⁻¹.

 For SIL2 applications, the PFD_{AVG} value needs to be < 10⁻².
- (6) The switching contact output is connected to a standard NAMUR switching amplifier (e.g. Pepperl+Fuchs KF**-SR2-Ex*.W). The failure rates of the amplifier are not included in the listed failure rates.

H250/M40/HT/K*-SK with 1 or 2 fail-safe limit switches (MIN/MAX) ① and welded process connections

	λ_{SD}	λ _{SU}	λ_{DD}	λ_{DU}	SFF②	DCD	MTBF	SIL AC ③
Stress profile 2 (low stress)	0 FIT	177 FIT	10 FIT	58 FIT	76%	14%	432 years	SIL2
Stress profile 4 (high stress)	0 FIT	219 FIT	10 FIT	114 FIT	66%	8%	308 years	SIL2

T[Proof] 4	1 year	2 years	5 years
PFD _{AVG} ⑤	2.77*E-04	5.29*E-04	1.28*E-03

H250/M40/HT/K*-SK with 1 or 2 standard limit switches (MIN/MAX) **(6)** and welded process connections

	λ _{SD}	λ _{SU}	λ_{DD}	λ _{DU}	SFF②	DCD	MTBF	SIL AC ③
Stress profile 2 (low stress)	0 FIT	208 FIT	10 FIT	97 FIT	69%	9%	342 years	SIL2
Stress profile 4 (high stress)	0 FIT	250 FIT	10 FIT	152 FIT	63%	6%	260 years	SIL2

T[Proof] 4	Proof] 4 1 year		5 years
PFD _{AVG} ⑤	4.63*E-04	8.84*E-04	2.15*E-03

- ① The switching contact output is connected to a fail-safe NAMUR amplifier (e.g. Pepperl+Fuchs KF**-SH-Ex1). The failure rates of the amplifier are not included in the listed failure rates.
- ② The number listed is for reference only. The SFF must be determined for the complete subsystem.
- 3 SIL AC (architectural constraints) means that the calculated values are within the range for hardware architectural contraints for the corresponding SIL level.
- 4 It is assumed that proof testing is performed with a proof test coverage of 99%.
- (5) The PFD_{AVG} was calculated for profile 2 using the Markov modelling. The results must be considered in combination with PFD_{AVG} values of other devices of the Safety Instrumented Function (SIF) in order to determine suitability for a specific Safety Integrity Level (SIL) For SIL1 applications, the PFD_{AVG} value needs to be < 10⁻¹.
 - For SIL2 applications, the PFD_{Δ VG} value needs to be < 10⁻².
- 6 The switching contact output is connected to a standard NAMUR switching amplifier (e.g. Pepperl+Fuchs KF**-SR2-Ex*.W). The failure rates of the amplifier are not included in the listed failure rates.

H250/M40/K*-SK with 1 or 2 **fail-safe limit switches** (MIN/MAX) ① and **screwed** process connections

	λ _{SD}	λ _{SU}	λ_{DD}	λ_{DU}	SFF②	DCD	MTBF	SIL AC ③
Stress profile 2 (low stress)	0 FIT	242 FIT	10 FIT	63 FIT	79%	13%	341 years	SIL2
Stress profile 4 (high stress)	0 FIT	284 FIT	10 FIT	99 FIT	74%	9%	272 years	SIL2

T[Proof] 4	1 year	2 years	5 years
PFD _{AVG} ⑤	3.01*E-04	5.74*E-04	1.39*E-03

	λ _{SD}	λ _{SU}	λ_{DD}	λου	SFF②	DCD	MTBF	SIL AC ③
Stress profile 2 (low stress)	0 FIT	273 FIT	10 FIT	102 FIT	73%	8%	283 years	SIL2
Stress profile 4 (high stress)	0 FIT	315 FIT	10 FIT	137 FIT	70%	6%	233 years	SIL2

T[Proof] 4	[Proof] 4 1 year		5 years
PFD _{AVG} ⑤	4.87*E-04	9.30*E-04	2.26*E-03

- ① The switching contact output is connected to a fail-safe NAMUR amplifier (e.g. Pepperl+Fuchs KF**-SH-Ex1). The failure rates of the amplifier are not included in the listed failure rates.
- ② The number listed is for reference only. The SFF must be determined for the complete subsystem.
- 3 SIL AC (architectural constraints) means that the calculated values are within the range for hardware architectural contraints for the corresponding SIL level.
- 4 It is assumed that proof testing is performed with a proof test coverage of 99%.
- (5) The PFD_{AVG} was calculated for profile 2 using the Markov modelling. The results must be considered in combination with PFD_{AVG} values of other devices of the Safety Instrumented Function (SIF) in order to determine suitability for a specific Safety Integrity Level (SIL) For SIL1 applications, the PFD_{AVG} value needs to be $< 10^{-1}$.
 - For SIL2 applications, the PFD_{Δ VG} value needs to be < 10⁻².
- 6 The switching contact output is connected to a standard NAMUR switching amplifier (e.g. Pepperl+Fuchs KF**-SR2-Ex*.W). The failure rates of the amplifier are not included in the listed failure rates.

H250/M40/HT/K*-SK with 1 or 2 fail-safe limit switches (MIN/MAX) ① and screwed process connections

	λ_{SD}	λ _{SU}	λ_{DD}	λ_{DU}	SFF②	DCD	MTBF	SIL AC ③
Stress profile 2 (low stress)	0 FIT	252 FIT	10 FIT	84 FIT	75%	10%	313 years	SIL2
Stress profile 4 (high stress)	0 FIT	294 FIT	10 FIT	139 FIT	68%	6%	243 years	SIL2

T[Proof] 4	1 year	2 years	5 years	
PFD _{AVG} (5)	4.01*E-04	7.66*E-04	1.86*E-03	

H250/M40/HT/K*-SK with 1 or 2 standard limit switches (MIN/MAX) (6) and screwed process connections

	λ _{SD}	λ _{SU}	λ_{DD}	λ _{DU}	SFF②	DCD	MTBF	SIL AC ③
Stress profile 2 (low stress)	0 FIT	283 FIT	10 FIT	122 FIT	70%	7%	263 years	SIL2
Stress profile 4 (high stress)	0 FIT	325 FIT	10 FIT	177 FIT	65%	5%	212 years	SIL2

T[Proof] 4	Proof] 4 1 year		5 years	
PFD _{AVG} ⑤	5.83*E-04	1.11*E-03	2.70*E-03	

- ① The switching contact output is connected to a fail-safe NAMUR amplifier (e.g. Pepperl+Fuchs KF**-SH-Ex1). The failure rates of the amplifier are not included in the listed failure rates.
- ② The number listed is for reference only. The SFF must be determined for the complete subsystem.
- 3 SIL AC (architectural constraints) means that the calculated values are within the range for hardware architectural contraints for the corresponding SIL level.
- 4 It is assumed that proof testing is performed with a proof test coverage of 99%.
- (5) The PFD_{AVG} was calculated for profile 2 using the Markov modelling. The results must be considered in combination with PFD_{AVG} values of other devices of the Safety Instrumented Function (SIF) in order to determine suitability for a specific Safety Integrity Level (SIL) For SIL1 applications, the PFD_{AVG} value needs to be < 10⁻¹.
 - For SIL2 applications, the PFD_{Δ VG} value needs to be < 10⁻².
- 6 The switching contact output is connected to a standard NAMUR switching amplifier (e.g. Pepperl+Fuchs KF**-SR2-Ex*.W). The failure rates of the amplifier are not included in the listed failure rates.

H250/M40/ESK-SE with 4..20 mA current output and welded process connections

	λ _{SD}	λ _{SU}	λ_{DD}	λ _{DU}	SFF②	DCD	MTBF	SIL AC ③
Stress profile 2 (low stress)	0 FIT	183 FIT	293 FIT	111 FIT	81%	73%	170 years	SIL1
Stress profile 4 (high stress)	0 FIT	211 FIT	307 FIT	147 FIT	78%	68%	151 years	SIL1

T[Proof] 4 1 year		2 years	5 years
PFD _{AVG} ⑤	5.37*E-04	1.02*E-03	2.46*E-03

H250/M40/HT/ESK-SE with 4..20 mA current output and welded process connections

	λ_{SD}	λ _{SU}	λ_{DD}	λ _{DU}	SFF②	DCD	MTBF	SIL AC ③
Stress profile 2 (low stress)	0 FIT	193 FIT	293 FIT	131 FIT	78%	69%	163 years	SIL1
Stress profile 4 (high stress)	0 FIT	221 FIT	307 FIT	187 FIT	73%	62%	141 years	SIL1

T[Proof] 4	1 year	2 years	5 years
PFD _{AVG} (5)	6.32*E-04	1.20*E-03	2.90*E-03

- ② The number listed is for reference only. The SFF must be determined for the complete subsystem.
- 3 SIL AC (architectural constraints) means that the calculated values are within the range for hardware architectural contraints for the corresponding SIL level.
- (4) It is assumed that proof testing is performed with a proof test coverage of 99%.
- The PFD_{AVG} was calculated for profile 2 using the Markov modelling. The results must be considered in combination with PFD_{AVG} values of other devices of the Safety Instrumented Function (SIF) in order to determine suitability for a specific Safety Integrity Level (SIL)

For SIL1 applications, the PFD_{AVG} value needs to be $< 10^{-1}$.

For SIL2 applications, the PFD_{AVG} value needs to be $< 10^{-2}$.

H250/M40/ESK-SE with 4..20 mA current output and screwed process connections

	λ _{SD}	λ _{SU}	λ_{DD}	λ _{DU}	SFF②	DCD	MTBF	SIL AC ③
Stress profile 2 (low stress)	0 FIT	233 FIT	317 FIT	137 FIT	80%	70%	148 years	SIL1
Stress profile 4 (high stress)	0 FIT	261 FIT	331 FIT	172 FIT	77%	66%	133 years	SIL1

T[Proof] 4	1 year	2 years	5 years
PFD _{AVG} ⑤	6.62*E-04	1.26*E-03	3.04*E-03

H250/M40/HT/ESK-SE with 4..20 mA current output and screwed process connections

	λ _{SD}	λ _{SU}	λ_{DD}	λ _{DU}	SFF ②	DCD	MTBF	SIL AC ③
Stress profile 2 (low stress)	0 FIT	243 FIT	317 FIT	157 FIT	78%	67%	142 years	SIL1
Stress profile 4 (high stress)	0 FIT	273 FIT	331 FIT	212 FIT	74%	61%	126 years	SIL1

T[Proof] 4	1 year	2 years	5 years
PFD _{AVG} ⑤	7.57*E-04	1.44*E-03	3.48*E-03

- ② The number listed is for reference only. The SFF must be determined for the complete subsystem.
- 3 SIL AC (architectural constraints) means that the calculated values are within the range for hardware architectural contraints for the corresponding SIL level.
- 4 It is assumed that proof testing is performed with a proof test coverage of 99%.
- The PFD_{AVG} was calculated for profile 2 using the Markov modelling. The results must be considered in combination with PFD_{AVG} values of other devices of the Safety Instrumented Function (SIF) in order to determine suitability for a specific Safety Integrity Level (SIL)

For SIL1 applications, the PFD_{AVG} value needs to be $< 10^{-1}$.

For SIL2 applications, the PFD_{AVG} value needs to be $< 10^{-2}$.

8.1 Annex 1

Constricted Description Code for H250/M40 Functional Safety Equipment acc. to EN 61508

The description code for H250/M40 consists of the following elements ①

① Device type

H250 - standard version

② Materials / versions

RR - Stainless Steel

HC - Hastelloy

Ti - Titanium

F - aseptic version (food)

3 Series of indicators

M40 - Indicator M40

M40S - Indicator with added impact and corrosion protection

M40R - Indicator in Stainless Steel housing

4 High temperature version

HT - Version with HT extension

⑤ Electrical signal output

ESK - current output ESK4

6 Limit switch

K1 - One limit switch

K2 - Two limit switches

② Explosion protection

Ex - Explosion-protected equipment

8 SIL compliance

SK - SIL2 compliant limit switches acc. to IEC 61508

SE - SIL1 compliant current output acc. to IEC 61508

^{*} positions which are not needed are omitted (no blank positions)

8.2 Annex 2

Fail-safe contact types, used for SIL2 compliant H250/M40:

SJ3,5-SN (Pepperl+Fuchs) 2-wire fail-safe inductive NAMUR switch

SJ3,5-S1N (Pepperl+Fuchs) 2-wire fail-safe inductive NAMUR switch (inverted)

Recommended fail-safe switching amplifiers for the fail-safe NAMUR limit switches

Type code	Manufacturer	Supply voltage	Channel	Output
KFD2-SH-Ex1	Pepperl+Fuchs	2035 Vdc	1 safe fail	Redundant relay
KHD2-SH-Ex1.T.0P	Pepperl+Fuchs	2035 Vdc	1 safe fail	Electronic + relay
KHA6-SH-Ex1	Pepperl+Fuchs	85253 Vac	1 safe fail	Redundant relay

Standard contact types, used for SIL2 compliant H250/M40:

SC3,5-N0 (Pepperl+Fuchs) 2-wire fail-safe inductive NAMUR switch

Recommended standard switching amplifiers for the standard NAMUR limit switches:

Type code	Manufacturer	Supply voltage	Channel	Output
KFA6-SR2-Ex1.W	Pepperl+Fuchs	230 VAC	1	relay
KFA5-SR2-Ex1.W	Pepperl+Fuchs	115 VAC	1	relay
KFD2-SR2-Ex1.W	Pepperl+Fuchs	24 VDC	1	relay
KFA6-SR2-Ex2.W	Pepperl+Fuchs	230 VAC	2	relay
KFA5-SR2-Ex2.W	Pepperl+Fuchs	115 VAC	2	relay
KFD2-SR2-Ex2.W	Pepperl+Fuchs	24 VDC	2	relay

KROHNE product overview

- Electromagnetic flowmeters
- Variable area flowmeters
- Ultrasonic flowmeters
- Mass flowmeters
- Vortex flowmeters
- Flow controllers
- Level meters
- Temperature meters
- Pressure meters
- Analysis products
- Products and systems for the oil & gas industry
- Measuring systems for the marine industry

Head Office KROHNE Messtechnik GmbH Ludwig-Krohne-Str. 5 47058 Duisburg (Germany) Tel.:+49 (0)203 301 0 Fax:+49 (0)203 301 10389 info@krohne.de

The current list of all KROHNE contacts and addresses can be found at: www.krohne.com

